Model Library Support Vector Machine (LibSVM) untuk Sentiment Review Penilaian Pesisir Pantai

نویسندگان

چکیده

Peningkatan pelayanan sebagai upaya untuk memberikan kenyamanan sebuah tempat wisata, khususnya pesisir pantai selatan pulau Jawa, bagi para pengunjung merupakan tuntutan pengelola wisata yang akan dampak positif di masa depan. Penilaian dilakukan mengetahui respons mengenai tersebut, kesan atau tidak, menjadi kesulitan tertentu pihak terkait, baik pemerintah maupun pengelola, dapat meningkatkan wilayah Jawa. Penerapan teknologi text mining berbasis machine learning, sentiment review, salah satu solusi diusulkan mengatasi permasalahan sehingga prediksi potensi diketahui sebelumnya. Pada makalah ini, model review dengan menggunakan metode library support vector (LibSVM). Proses optimalisasi mengusulkan optimasi berbasiskan feature weights algoritma particle swarm optimization (PSO) peningkatan akurasi. Upaya akurasi pada kontribusi utama ini. Hasil penelitian dan eksperimen terhadap menghasilkan terbaik diberi nama LibSVM_IG+PSO LibSVM information gain (IG) PSO, tingkat sebesar 88,97%. Model ini diharapkan pendukung keputusan dalam menilai sentimen pariwisata maritim dimanfaatkan oleh wisatawan, pemerintah, wisata.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting Stock Price Movements Based on Opinion Mining and Sentiment Analysis: An Application of Support Vector Machine and Twitter Data

Today, social networks are fast and dynamic communication intermediaries that are a vital business tool. This study aims at examining the views of those involved with Facebook stocks so that we can summarize their views to predict the general behavior of this stock and collectively consider possible Facebook stock price movements, and create a more accurate pattern compared to previous patterns...

متن کامل

One-Class Support Vector Machine for Sentiment Analysis of Movie Review Documents

Sentiment analysis means to classify a given review document into positive or negative polar document. Sentiment analysis research has been increased tremendously in recent times due to its large number of applications in the industry and academia. Sentiment analysis models can be used to determine the opinion of the user towards any entity or product. E-commerce companies can use sentiment ana...

متن کامل

Model selection for support vector machine classification

We address the problem of model selection for Support Vector Machine (SVM) classification. For fixed functional form of the kernel, model selection amounts to tuning kernel parameters and the slack penalty coefficient C. We begin by reviewing a recently developed probabilistic framework for SVM classification. An extension to the case of SVMs with quadratic slack penalties is given and a simple...

متن کامل

A Wavelet Support Vector Machine Combination Model for Daily Suspended Sediment Forecasting

Abstract In this study, wavelet support vector machine (WSWM) model is proposed for daily suspended sediment (SS) prediction. The WSVM model is achieved by combination of two methods; discrete wavelet analysis and support vector machine (SVM). The developed model was compared with single SVM. Daily discharge (Q) and SS data from Yadkin River at Yadkin College, NC station in the USA were used. I...

متن کامل

Least Squares Support Vector Machine for Constitutive Modeling of Clay

Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: JNTETI (Jurnal Nasional Teknik Elektro dan Teknologi Informasi)

سال: 2023

ISSN: ['2460-5719']

DOI: https://doi.org/10.22146/jnteti.v12i2.6367